
0.1. Panel Data.

• Suppose we have a panel of data for groups (e.g. people, countries or regions)
i = 1, 2, ..., N over time periods t = 1, 2, ..., T on a dependent variable yit and
a kx1 vector of independent variables xit and we are interested in measuring
the effect of xit on yit. say

yit = αi + β
0

ixit + εit (0.1)

• where βi is a kx1 vector and E(εit) = 0; E(ε2it) = σ2i ; E(εitεjt) = σij;
E(εitεjt−s) = 0 for s 6= 0. Notice that here k does not include the intercept,
whereas above it did.

The panel data estimators for the linear model are all standard, either the
application of OLS or GLS.

• There are 3 literatures on this type of problem, distinguished by the relative
magnitudes of N and T and the assumptions that are made about parameter
and variance homogeneity.

1. The large T small N literature. This uses time-series asymptotics, T going
to infinity N fixed. The standard model is the Zellner Seemingly Unrelated
Regression Estimator, SURE, which estimates the full model above by GLS
allowing for the between group covariances E(εitεjt) = σij. Notice that the
between group covariance matrix involves estimating N(N+1)/2 elements,
so grows rapidly with N.

2. The large N small T literature. This arises typically with large surveys
like the BHPS where the number of time periods is small (5 is quite large)
but there may be many thousand cross-section observations. T is not large
enough to estimate a model for each group so strong homogeneity assump-
tions tend to be imposed on the slope parameters βi = β and also often
on the intercept parameters, αi = α. Between group covariances, σij, are
asumed to be zero. The asymptotic properties of the estimators are estab-
lished by letting N go to infinity, T fixed. These are usually non-linear
models.



3. Large N large T literature (sometimes known as panel time-series), where
T is large enough to estimate an equation for each group, but N is too
large to allow for a freely estimated between group covariance matrix. The
asymptotics involves letting both N and T go to infinity in some way.
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1. Fixed Effects

The most widely used model in the panel literature is the Fixed Effect (FE) model:

yit = αi + β
0
xit + uit (1.1)

E(uit) = 0;E(u
2
it) = σ2 all i;E(uitujt−s) = 0 for s 6= 0 and i 6= j. This restricts

the slope coefficients and the variances to be the same across groups, while let-
ting the intercepts differ, and treats all between group covariances as zero. This
model is known by a large number of different names, because it was developed
independently in many areas. These include:
the “Least Squares Dummy Variable” model (because it can be implemented

by running a least squares regression including a dummy (0,1) variable for each
group;
the “Within Estimator” since it just uses the within group variation, see below;
the (one way) “Fixed Effects” estimator, in contrast to the two way Fixed

Effects and Random Effects estimators discussed below;
the analysis of covariance estimator; and various other names.
Notice that we cannot estimate αi consistently (N → ∞, T fixed), since the

number of parameters grows with the sample size N. However we can estimate β
consistently.
The total variation in yit can be decomposed into the within group variation

and the between group variation:

NX
i=1

TX
t=1

(yit − y)2 =
NX
i=1

TX
t=1

(yit − yi)
2 + T

NX
i=1

(yi − y)2

where

y =
NX
i=1

TX
t=1

yit/NT ; yi =
TX
t=1

yit/T ;

the FE “Within Regression” just uses the within group variation, since the group
specific intercepts can be removed by taking deviations from the group mean,
allowing (1.1) to be written:

(yit − yi) = β0(xit − xi) + uit (1.2)

the “Between regression” is the cross-section regression using the group means:

yi = α+ β0 xi + ui.
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If the intercepts are all regarded as identical, then one just gets standard OLS on
all the data:

yit = α+ β
0
xit + uit (1.3)

or
(yit − y) = β0(xit − x) + uit. (1.4)

This gives equal weight to the within group and the between group variation.

1.0.1. Parameterisation and two way models.

The parameters of dummy variable models like these can be written in a number of
ways and this often gives cause for confusion. In (1.1) We estimate N parameters
αi, a separate intercept for each group. We could also express this as αi = α+µi,
where

PN
i=1 µi = 0, i.e. estimating α and the N − 1 independent µi :

yit = α+ µi + β0xit + uit

This is equivalent to (1.2). Then, defining ηxi = xi − x, ηyi = yi − y,we can also
express (1.2)

(yit − yi + y − y) = β0(xit − xi + x− x) + uit (1.5)

(yit − ηyi − y) = β0(xit − ηxi − x) + uit. (1.6)

The Two way fixed effect model allows for a separate intercept for every group
and every time period:

yit = αi + αt + β0xit + uit.

Notice that we cannot estimate N+T free intercepts (there would be exact multi-
colinearity, the dummy variable trap), some restriction is required to identify the
parameters and a common one is to express the model as.

yit = α+ µi + µt + β0xit + uit

subject to
PN

i=1 µi = 0,
PT

t=1 µt = 0. This can be estimated by taking deviations
from the year means yt and xt and well as the group means, or

(yit − ηyi − ηyt − y) = β0(xit − ηxi − ηxt − x) + uit. (1.7)

.
An alternative restriction is to take one group-year as the base and express all

the others as deviations from that.
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1.0.2. Random Effect Models

The one way fixed effect model involves estimatingN separate αi and if N is large,
in the thousands, this involves a lot of parameters and a large loss in efficiency.
The alternative is the “Random Effects” model which treats the µi not as fixed
parameters to be estimated, but as random variables, E(µi) = 0, E(µ

2
i ) = σ2µ. It

is assumed that randomness implies that the µi are distributed independently of
uit and (the strong assumption) independently of xit.
With these assumptions we only have to estimate 2 parameters α and σ2µ not

the N αi. The model is then:

yit = α+ β0xit + (uit + µi)

where the parentheses indicate the new error term, vit = (uit + µi). E(vit) =
0;E(v2it) = σ2+σ2µ; E(vitvit−s) = σ2µ, s 6= 0; E(vitvjt−i) = 0, i 6= j. Thus this error
structure introduces a very specific form of serial correlation. Estimation is by
Generalised Least Squares, equivalent to OLS on the transformed equation:

(yit − θyi) = β0(xit − θxi) + uit,

where;
θ = 1− σp

Tσ2µ + σ2
.

Notice that the Fixed Effect estimator corresponds to the case where θ = 1 or
Tσ2µ is infinite. The Random Effect Estimator lies between the FE and OLS
estimates. Feasible GLS requires an estimate of θ, but there are a number of
possible consistent estimates from the FE or OLS first stage regressions. You can
also have random time effects.

1.1. Testing

If the unrestricted model is, the general model with no between group covariances

yit = αi + β
0

ixit + εit (1.8)

and the restricted model is the fixed effect model

yit = αi + β
0
xit + uit. (1.9)
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This appears to be merely involve testing equality of the slope coefficients, i.e.
the k(N − 1) restrictions βi = β, i = 1, 2, ..., N. The standard F test (Chow test)
for this is:

(
PPbu2it −PPbε2it)/N(k − 1)PPbε2it/(NT −N(k + 1))

∼ F [k(N − 1), (NT −N(k + 1))].

The difficulty is that this test will only be correct if the variances are the same
across groups: σ2i = σ for all i.
One alternative is to use Likelihood Ratio Tests which can be calculated from

the same two sets of least squares regressions. If both coefficients and variances
differ, the maximised log likelihood is, apart from a constant, the sum of the log
likelihoods for the individual equations:

L1 = −
T

2

NX
i=1

ln bσ2i ; bσ2i = TX
t=1

bε2it.
If the coefficients differ, but the variances are the same, the maximised log likeli-
hood is:

L2 = −
NT

2
ln bσ2; bσ2 = NX

i=1

TX
t=1

bε2it.
If both the slope coefficients and the variances are the same, the maximised log
likelihood is:

L3 = −
NT

2
ln eσ2; eσ2 = NX

i=1

TX
t=1

bu2it.
There is a fourth case, equal coefficients and different variances, discussed above.
The test for equality of variances is then just 2(L1−L2) ∼ χ2(N−1). The test

for equality of both coefficients and variances is just 2(L1 −L3) ∼ χ2(N − 1)(k+
1). The LR equivalent of the F test above (equality of coefficients conditional
on equality of variances) is 2(L2 − L3) ∼ χ2(k[N − 1]). Exactly the same sort
of procedure can be used for testing equality of intercepts. If N was small we
could start from the more general SURE model, which allowed for between group
covariances.
The Likelihood ratio approach does not work with the Random Effects model,

since it is a GLS rather than ML estimator. The usual approach is to test be-
tween OLS and RE, by using a standard LM test for heteroskedasticity, since the
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variances will differ between groups if the RE model is appropriate. Of course,
you may get heteroskedasticity for other reasons than random effects.

To test between RE and FE a Hausman test is used. Call the FE estimator bβF
with estimated Variance Covariance matrix V (bβF ) and the RE estimator bβR with
V (bβR). If the REmodel is correct, bβR is consistent and efficient so V (bβF ) > V (bβR).
The variance of the difference is V (bβF − bβR) = V (bβF )− V (bβR). If the RE model
is wrong (the effects are not random but correlated with the xit) then the RE
estimates are inconsistent, but the FE estimates are still consistent. The Hausman
tests uses as a test statistic:

(bβF − bβR)0[V (bβF )− V (bβR)]−1(bβF − bβR) ∼ χ2(k)

If this is large (the difference between the estimates is significant) you reject the
null hypothesis that the RE model is appropriate against the alternative that the
FE model is appropriate.

1.1.1.
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2. Dynamics.

• Consider a dynamic version of the fixed effect model

yit = αi + β
0
xit + λyi,t−1 + uit (2.1)

• the usual estimator is inconsistent (N →∞, T fixed), because of the usual
problem of the downward bias of the lagged dependent variable because of
dependence on initial conditions, though the bias declines with T.

• There are various instrumental variable estimators which are consistent,
which remove the αi by differencing rather than by taking deviations from
the group means.
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• If you difference, you get

∆yit = β
0
∆xit + λ∆yi,t−1 +∆uit (2.2)

• but ∆uit = uit − ui,t−1 is clearly correlated with ∆yi,t−1 = yit − yi,t−1 since
ui,t−1 determines yi,t−1.

• However, you can use yi,t−2 and earlier as instruments.
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• Suppose the coefficients differ:

yit = αi + β
0

ixit + λiyi,t−1 + uit (2.3)

• and this is ignored, then the equation is:

yit = αi + β
0
xit + λyi,t−1 + [(βi − β)

0
xit + (λi − λ)yi,t−1 + uit] (2.4)

• where vit = [(βi − β)
0
xit + (λi − λ)yi,t−1 + uit] is the new error term.

• This error term is going to be serially correlated and correlated with the
lagged dependent variable, so the estimates will be inconsistent even for
large T .

• This heterogeneity bias, biases bλ upwards (i.e. in the opposite direction to
the initial condition bias) and bβ downwards towards zero.

• If xit is I(1) serial correlation coefficient of unity and λi = 0, P lim(bβ) = 0,
P lim(bλ) = 1, T →∞. The estimates are wrong.

• The bias on the long-run coefficients β/(1 − λ) is smaller because the two
biases cancel out to some extent.
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2.0.2. Alternatives to Pooling

• If T is large enough to estimate an equation for each group, rather than
imposing homogeneity, which can have adverse consequences (particularly
in dynamic models), it may be better to use a weighted average of the
individual coefficients of the form

eβ =XWi
bβi[XWi]

−1

• There are a number of such estimators available, differing in the choice of
weights.

• One the Swamy Random Coefficients Models, weights inversely to the ad-
justed variances of the bβi.

• Note that the FE estimator is also of this form where

Wi = [ eσ2(X 0
iXi)

−1]−1.
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